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AbstrscL We study integer S > 1 spin chains. We extend the Kennedy-Tasaki non-local 
unilary transformation for S = 1 to arbitrary integer S. We show the main results 
of Kennedy and %ki are mainlained for S > 1: Heisenberg-type Hamiltonians are 
lransformed to Hamiltonians of nearest-neighbour inleractions wilh 21 x Z, symmetry. 
and the den Nij*Rommelse string observables are transformed to the ferromagnetic 
correlation observables. We assen that in general values of integer S there exist several 
phases with the hidden Z, x Z, symmetry breaking. ?he den Nijs-Rommelse string 
order parameters, which mea?.ure the hidden Z, x Z, symmetry breaking, are calculated 
explicitly for several variane of the VBS-type slate& I n  the standard w slate, the 
hidden Zz x Z, symmetry breaks down when S is odd but remains unbroken when S 
is even. Our results for panially dimerized w slates suggest that the hidden Zz x Z, 
symmetry breaking can be used to detect the su-ive dimerization transitions predicted 
by Meek and Haldane. Some new anisotropic w.lype states are investigated. The 
result sugggts that there are successive phase vansitions when we increase the uniaxial 
anisotropy in a Heisenbergtype model. Other new w-type slates with long-range order 
are considered, and their relevance to lhe phase diagram of the Heisenberg XXZ 
model and the magnetization process of antifemmagnels is investigated. We inuoduce 
an extended string order parameter which possesses a characleristic behaviour in the 
partially dimerized m.3 states. 

1. Introduction 

Haldane [l] was the first to predict the qualitative difference between integer3 and 
half-integer-S spin chains. He argued that, when S is an integer, the spin-S quantum 
Heisenberg antiferromagnetic chain has a unique disordered ground state with a finite 
excitation gap, while the same model has no excitation gap when S is a half integer. 
Although his prediction was based on large3 arguments, it has been confirmed for 
S = 1 by experimental, numerical and theoretical studies (for a review, see [2]). 

Furthermore, deeper insight into the mechanism of Haldane-gap phenomena has 
been derived from the work of Affieck and co-workers [3], who constructed the 
valence-bond-solid (VBS) states and the Hamiltonians leading to them. The VBS 
models, though different from the standard Heisenberg models, are examples of 
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integer-S quantum antiferromagnetic chains with most of the properties Haldane 
predicted. 

It has been observed that the S = 1 VBS model has two non-standard properties. 
First, the S = 1 VBS state has a hidden antiferromagnetic order, i.e. in the standard 
,?'-basis representation of the VBS state, non-zero spins must alternate between + I  
and -1. Second, the VBS states on a finite open chain have two almost-free S = 
degrees of freedom at the ends of the chain; thus they are fourfold degenerate. 

These two properties are not specific to the solvable VBS model, but turned out 
to be " n o n  characteristics in the Haldane phase, which includes the Heisenberg 
point. Den Nijs and Rommelse 141 argued that the Haldane phase is characterized 
by the hidden antiferromagnetic order, which can be measured by the string order 
parameters 

where a = z ,y  or z (see also [5]) .  Numerical calculations [6] confirmed their 
prediction. On the other hand, Kennedy [7J pointed out that S = 1 systems in the 
Haldane phase defined on a finite open chain have four nearly-degenerate states of 
lowest energies, and they are separated from the other states by a finite Haldane gap. 

We can naturally understand these two characteristic features as consequences of 
a hidden Z, x Z, symmetry breaking. Kennedy and Tisaki [SI introduced a non-local 
unitary transformation, which reveals the hidden Z, x Z, symmetry in the following 
sense. The transformation converts S = 1 Heisenberg-type antiferromagnetic models 
into models of local interactions with Z, x Z, symmetry, and the den Nijs-Rommelse 
string obsewable into the ferromagnetic correlation observable. The hidden Z, x Z, 
symmetry is completely broken in the Haldane phase but is partly broken or unbroken 
in the other phases. 

Thus the notion of the hidden Z, x Z, symmetry shed light on the understanding 
of the ground-state properties of the S = 1 quantum antiferromagnetic chains. Since 
Haldane's original prediction was universal for all integer S, one may ask whether 
there is a similar mechanism for higher values of S. The purpose of the present 
paper is to extend thc notion of the hidden 2, x Z, symmetry to the spin chains with 
higher values of S, and investigate their ground states on the basis of this symmetry. 

We show that the Kennedy-Tisaki unitary transformation can be written in a 
compact operator form and can be extended to spin chains with arbitrary integer 
S. As in the S = 1 spin chains, the Heisenberg-type models are transformed into 
models of local interactions with a Z, x Z, symmetry, and the den Nijs-Rommelse 
string order parameters are converted into the ferromagnetic order parameters. 

We evaluate the string order parameters explicitly in several variants of the VBs 
states. The results for the standard VBS states suggest that, in the Haldane phase, 
the hidden Z, x Z, symmetry is completely broken when S is an odd integer, but 
remains unbroken when S is an even integer. The results for partially dimerized VBS 
states suggest that the notion of the hidden Z, x Z, symmetry breaking can be used 
to detect the successive dimerization transitions predicted by M e e k  and Haldane [9]. 

We construct new VBs-type states, which we will call intermediate-D VBS states, 
and evaluate the string order parameters in these states. The results suggest that the 
Heisenberg model with uniaxial anisotropy for an integer S undergoes S successive 
phase transitions when the uniaxial anisotropy parameter D is varied. We also 
construct other new VBS-type states with long-range order and discuss their properties. 
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We introduce extended string order parameters characterized by an angle 
parameter 8. The extended order parameters reduce to the original den Nos- 
Rommelse ones when 0 = T .  We evaluate the extended string order parameters 
in the various ms-type states for integer and half-integer S. We find characteristic 
behaviour in the location of the zero points of the extended string order parameters 
in partially dimerized VBS states. 

The organization of the present paper is as follows. In section 2, we show the 
compact operator form of the Kennedy-maki unitary transformation. In section 3, 
we give a method to evaluate the string order parameters in the spin-S VBS states, and 
investigate the hidden symmetry breaking in these states. In section 4, we evaluate the 
string order parameters in partially dimerized VBS states and discuss their relevance 
to the successive dimerization transitions. In section 5, we construct new VBs-type 
states with anisotropy. Our analysis leads us to conjecture the existence of new phase 
transitions in Heisenberg models with uniaxial anisotropy. In section 6, we construct 
novel ws-type stateS with long-range order and study their properties. In section 7, 
we introduce an extension of the den Nijs-Rommelse string order parameters and 
evaluate these order parameters in various VBs-type states. 

2. Non-local unitary transformation for arbitrary integer S 

The S = 1 VBS state has a hidden antiferromagnetic order [4,5]. In the standard 
Sz-basis representation of the VBS state, non-zero spins must alternate between +1 
and -1. An example of an allowed configuration is ( + - ~ + O - + - + O O O O - O + ) .  
Other ground states of the S = 1 spin chains in the Haldane phase also have similar 
(but not perfect) hidden antiferromagnetic order. Kennedy and 'llsaki [SI defined a 
non-local unitary transformation which reveals a hidden Z, x 2, symmetry breaking in 
the systems with such hidden antiferromagnetic order. Their unitary transformation 
U is defined in the foUoWing way. In the S2-basis representation, we move to the 
right from the left end of the chain, looking for non-zero spins. The first non-zero 
spin is left unchanged, the second is flipped, the third is left unchanged, the fourth 
is flipped, and so on. Finally, we multiply the state vector with the factor ( - l ) N ( m )  
where N ( b )  is the number of odd sites on which there is a 0. A few examples of 
the action of U are as follows: 

(O+ -m+ 00- t -00) + (O+ too0 t 00 t + + 00) 
(+O+ -m+ - - tm) + -(+O- -m- - + +m). 

In particular, we see that the S = 1 ms states are transformed to the states containing 
only 0 and +1 or only 0 and -1. 

The hidden antiferromagnetic order found in the S = 1 VBS state gave a hint to 
the construction of the Kennedy-7hsaki unitary transformation. On the other hand, 
the S > 1 VBS states are expected to possess more complicated hidden structure. 
Hence we shall formally extend the Kennedy-%saki unitary transformation to the 
S > 1 spin chains. 

Throughout this section, S denotes an arbitrary integer. First, we define a unitary 
transformation 'I' by 
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which will turn out to be equivalent to U of Kennedy and ’baki for S = 1. 
A little calculation shows that the factors in V commute with each other: 

[exp (ix S; S; ), exp (insf S: )] = 0 (3) 

where j < IC and 1 < m. Thus we can arbitrarily order the factors in V. 
Let us consider the S = 1 case. In the standard S”-basis representation, from 

0 -1 
exp(inSz)= ( -1 ;) 

-1 0 

we see that exp(inSfS,”) does not change the state when Sf = 0, but flips the spin 
at site j and multiplies the state vector with the phase factor (-1) when Sf = Al. 
A little calculation shows that U = (-1)L/2V for S = 1 chains when the number of 
sites L is even. (This argument is given by %saki [lo].) 

Now we consider general cases of integral S and calculate the transformation of 
spin operators by V. After some calculations, we find 

VS~ZV-’  = STexp (ix ~ t = ~ , ,  s;) 

VS,YV-’ = e”p( i sc ’ ,= :~~)~yexp( i? iCt=~+ ,  s;) (4) 

V S ~ V - ’  = exp (ix ~j..; si)  S; 

where we made use of the commutation relations between spin operators. 
This is the same form as the result for S = 1 in [SI. Moreover, having used 

only the commutation relations of the spin operators, we have extended the unitary 
transformation to arbitrary integer-S spin chains. 

We can show that a wide class of Hamiltonians, which contain only polynomials 
of the operators SpS:t, and (Sp)*, are transformed to Hamiltonians of local 
interactions with a Z, x Z, symmeay. For example, if we have the Hamiltonian 

H = c S j ’ S & ,  + Sj”S,?,, + XSfSftl + D(Sj2)’ (5 )  
f 

its transformation is 

FI = VHV-’ = Cs,”exp(ixS;,,)Sj;, + Sjyexp[i?i(S; + S;,~)]S,?~, 
i 

+ AS; exp(inS;)Sftl + D ( S ; ) 2 .  

We see that this has a Z, x Z, symmetry, i.e. it is invariant under the rotation of all 
sites about the z, y or z axis by angle x .  Among the other important examples are 
the VBS Hamiltonians, which only contain polynomials of S i .  S,,,. 

To measure the 2, x Z, symmetry breaking in the transformed system, we consider 
the den Nijs-Rommelse string order parameters defined by 

o;~,,( H )  = rim ( S; exp (ix s;) si), 

O : ~ J H )  = ~ i m  (S:exp(ixC,k=jt,~j)~kZ)H 

1k-jl-m 

Ik-j1-w 
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where (),, denotes the expectation value in the ground state of the Hamiltonian H. 
The transformation of the string observable leads to 

O;&(ff) = o&,,,(fi) = (k- j ( - roo  lim (sj.sg), Q = z , z  (6) 

which means the string order parameters measure the hidden symmetry breaking for 
an arbitrary integer S. 

We remark that, although our definition of the string order parameters and our 
representation of the transformed Hamiltonian seem different from those in [SI, they 
are equivalent for S = 1 because exp(inS")S" = -So. 

We finally note that, when S is a half integer, the unitary transformation defined 
by (2) does not transform standard Hamiltonians like (5) into Hamiltonians of local 
interactions. The technical reason for this is that the factor exp(2inSJS;), which 
appears in the calculation, is equal to 1 only when S is an integer. Here we again 
see a difference between integer-S and half-integer-S spin chains. 

3. Hidden Z, x Z, symmetry breaking in the VBs states 

'Ib see whether or not the hidden 2, x Z, symmetry discussed in the previous section 
is broken, we explicitly calculate the string order parameters in several VES-type states 
of integer S spin chains. 

In this section, we consider the standard (translationally invariant) VBS state for 
integer S. The VBS states are the exact ground states of certain Hamiltonians [3] and 
are expected to represent the ground states accompanied by the Haldane gap. Using 
the Schwinger boson representation [ll], the VBS stale on a finite chain with L sites 
is represented as - 

where 0 < p,q < S. Here the a! and b,' are mutually independent boson creation 
operators, which satisfy the commutation relations [a i ,a f ]  = [b;,bj] = Si, with 
all the other commutators vanishing, and 10) is the vacuum with respect to bosons, 
namely a; 10) = bj 10) = 0. Spin operators are represented by the boson operators as 

ai t ai - bfb; a i b i  t + b la i  t t - a;b; - b;ai si. = si - 
2 2 2i 

s; = 

The meaning of the Schwinger boson representation is as follows. One can get a 
spin S variable by symmetrizing 2 5  spin-; variables; at (bf) increases the number 
of up (down) spin-; variables under symmetrization. In particular, (afbf+, - b,!af+,) 
creates the valence bond on the sites i and it 1. 

The integers p and q represent the spin-; degrees of freedom at the ends of the 
chain. The VBS states with any p, q satisfying 0 < p, q < S are the ground states of 
the VBS Hamiltonian; hence they are (S+ l)z-fold degenerate. An important feature 
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of the VBS states (7) is that when L -+ 03 these two degrees of freedom at both ends 
can be regarded as free spin-? variables. In fact 

lim (VBS(p,q)[VBS(T,s)) = C(&)[p!(S -p)!q!(S - q)!6p,rSg,s + O(e-”L)] (8) L-.W 

where a is some positive constant. This property, which we will call the decoupling 
property of the VBS states, is proved in the appendix. 

Now we move on to the evaluation of the string order parameten. Since we have 
O;hng = O:,,, by the rotational invariance of the VBS state, it is sufficient to evaluate 
Oz . only. 

”% avoid complications with the degrees of freedom at the ends, we evaluate the 
expectation value of the string observable in the VBS state IVSS) on a periodic 
chain. After taking the limit L -+ 03, the boundary condition does not affect the 
result. Although we eliminated the degrees of freedom at the ends, the decoupling 
property of the VBs states on a finite open chain will play an important role, as we 
will show later. 

S;) to IVBS). The action of the 
string operator is to rotate the spins at sites j , 3  + 1,. . . , k - 1 about the z axis by 
an angle rr; thus the valence bonds at (j - 1 , j )  and (k - 1, k) are twisted while all 
the other valence bonds remain unchanged. The twisted VBs state in the Schwinger 
boson representation is 

First, we apply the string operator exp(irr 

exp(irC:=;:I S W B S )  = rIl<i<(j-l)(a!b!tl- bfalt1)’ 
x (e-’*lzaf-,bf - ei”/2b! a ! ) S  

1-1 I 

x fl 
j<i<(.k-l) 

(albftl - b/af+l)s(ei”lz a k - l  b’ I; - e-’*l2bt k-1 at k )’ 

where aztl = af,  b i t ,  = bf. 
Next, we evaluate the matrix element of S;S; between the original VBS state 

and the twisted one. Each of the regions k + 1, k + 2 , .  . . , L ,  1,2,. . . , j  - 1 and 
j + 1 , j  4- 2,  . . . , k - 1 can be regarded as a finite chain. Applying the decoupling 
property (8) to these two regions, we get 

ofmng = , k ~ ; c m ( ~ ~ ~ l ~ ;  exp (iTcf:; S ~ ) S ; I V B S )  = lfs(-1)12 

where 
1 ,.fa2 - bib2 

f s ( w )  = ~ ( O l ( a 1 4  - b ~ a z ) ~ ( a z h  - bz%) 

x (aibi  - wbfa$)”(aJb; - bia;)SIO) 

N = (Ol(albz - bta2)s(a2b3 - b2a3)S(afbf - bfa!Js(a;bf - blaf)”lO). 
We have thus reduced the problem of finding the string order parameter to a three- 

site problem. Detailed analysis will be given in the next sectioa Here we show only 
the result: 
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where 6,,,, is equal to 1 if n is an odd integer and 0 otherwise. This is consistent 
with the known result [4] for S = 1. Moreover, we have found that for an odd integer 
S the VBS states break the hidden Z, x Z, symmetry, but for an even integer S they 
do not. ( m a k i  [lo] independently evaluated the den Nijs-Rommelse string order 
parameters in these states and reached a similar conclusion.) This difference between 
even and odd integer S may not lead to an essential difference in physical properties. 
In the following sections, however, we will show that the hidden symmehy breaking 
can be a measure of certain phase transitions in the ground state of quantum spin 
chains. 

In S = 1 spin chains, the hidden Z ,  x Z, symmetry breaking implies the fourfold 
near degeneracy in the ground states of a 6nite open chain. This degeneracy 
corresponds to the existence of spin-! degrees of freedom at the ends of the chain [8]. 
It would be worthwhile to see such degeneracy in the higher4 cases. We evaluate the 
magnetization in the transformed system of the VBS state on an open chain. Similar 
arguments as in the evaluation of the string order parameter lead to 

We have  of^,,, = I(VSzV-')Iz as expected. The factor (-l)P indicates that the 
spin-: degree of freedom at the left end of the chain just corresponds to the 
magnetization in the transformed system (VS"V-') ,  as in the S = 1 spin chains. 
Similar arguments show that the other spin-4 degree of freedom at the right end of 
the chain corresponds to (VSrV-'). 

However, since our hidden symmetry is always Z ,  x Z, , the ground states which 
break the hidden symmetry can be divided into only four classes. For S = 1, the 
fourfold degeneracy implied by hidden Z, x Z, symmetry breaking just corresponds 
to the fourfold degeneracy of the VBS states on a finite open chain. In contrast, for 
S > 1, the hidden Z, x Z ,  symmetry cannot completely specify each of the (S + 1)'- 
fold degenerate ground states of the VBS model. This fact suggests the possibility 
that there is another hidden symmetly, but we still do not know any such extended 
symmetries. 

Finally, we note a simple reason why the hidden Z ,  x Z, symmetry cannot be 
broken in the VBS states when S is even. If the hidden Z,x Z, symmetry is completely 
broken, the ground states should be classified into four sectors. On the other hand, 
there are (S + l)'-fold degenerate ground states and (S + 1)' cannot be divided by 
four; they cannot be classified into four equivalent sectors. 

4. Application to dimerization transitions 

ALReck and Haldane [9] studied a dimerization transition problem in quantum 
antiferromagnetic chains. For example, consider the following Hamiltonian: 

H = x [ l + ~ ( - l ) ~ ] S i . S ; + l .  
i 

(9) 

When E = fl, the Hamiltonian becomes a sum of independent two-spin interactions, 
and the ground state of the Hamiltonian is completely dimerized. When E = 0 
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the Hamiltonian is the standard Heisenberg antiferromagnetic Hamiltonian, and the 
ground state is expected to be in the massive Haldane phase if S is an integer, or in 
a massless phase if S is a half integer. 

AWeck and Haldane argued that there are (at least) 25 massless phase transition 
points separating 2s + 1 massive phases when c is varied from -1 to +l. Besides 
their original field-theoretical arguments, there is also a VBS picture for these 
transitions [12]. Each of the 25 f 1 massive phases can be represented by the 
(n, m)-mS state which is a vss-type state with n valence bonds between sites 2i and 
2i + 1, and m valence bonds between 2i + 1 and 2i + 2. Obviously n f m = 2s 
must be satisfied. An example is given in figure 1. 

Flgum 1. Partially dimerized v8s stale with n = and m = 4 (S = 3). A full line 
denotes a valence bond (a  singlet of two spin-$ variables). A broken circle represen& 
the symmetrization of spin-; variables at each site. 

The Schwinger boson representation of the (n ,  m)-VBs state is as follows: 

(10) InmvBs) = fl(a:jbbtl - b2 ja2 j+ t )" (a f j t t b f j+z  t t  - b&+tafj+2)m10) 
j 

where the degrees of freedom at both ends are neglected (cf equation (7)). This VBs 
picture also supports the existence of 25 phase-transition points. 

Here we apply the notion of the hidden 2, x Z, symmetry to the successive 
dimerization transitions for integer S. ?b do this, we evaluate the string order 
parameters in the (n ,  m)-vss states. If there is bond alternation, a variety of order 
parameters exist. For simplicity, we consider only 

o&ing = (k-j)-m lim (';;.+I exP (in E%2j+l ' f ) ' : k + l ) '  

Following the method described in the previous section, we have 

o:,,, = lfn,m(-1)12 

f n , n ~ ( ~ )  = F(ol(alb2 - b1a2)"(a2b3 - b2a3)m 

where 

1 ala2 - bfbz 
2 

x (a161 - wbfaf)n(afbi  - b$zi)mlO) 

N = (Ol(atbz - blaz)"(a2b3-  b2a3)m(aibl - bfa;)"(afb& - b$ai)m[O). 

We have used the decoupling property of the (n ,  m)-VBs states similar to (8) (see 
the appendix) Straightfonvard calculations show 
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We immediately get 

We note that, since f s ( w )  = fs,s(w),  this includes the result in the previous section. 
We found that ( n , m ) - w s  states with odd n and m break the hidden Z, x Z, 

symmetry, but for even n and m they do not. Hence we expect that the successive 
dimerization transitions separate these two kinds of states, Le. the hidden-symmetry 
broken and unbroken phases appear alternatingly when the dimerization proceeds. 
Our result gives one more support for the existence of the successive dimerization 
transition. 

However, our hidden-symmetry argument is not perfectly successful in the 
foUowing points. Our argument can only classify phases into two groups, namely, 
symmetry broken and unbroken phases. Moreover, though AIReck and Haldane 
predict successive dimerization transition both for integer S and half-integer S, our 
hidden 2, x Z, symmetry argument can be applied only to integer S. We will however 
show an approach to complement this defect in section 7. 

Finally we note that the validity of the VBS picture and our arguments for the 
model (9) is not yet established, because the VBS Hamiltonians are different from (9). 
We expect them to be valid, however, from the consistency with the field-theoretical 
prediction [9] (see also [13].) 

5. Application to anisotropic states 

The S = 1 quantum spin chains with the simple anisotropic Hamiltonian (5) have 
been studied intensively. Figure 2 shows the expected phase diagram of the ground 
state of the Hamiltonian (5) for S = 1. 

Feure 2. Qualitative phase diagram of the S = 1 Hamiltonian (5). H denota the 
Haldane phase, and F denota the ferromagnetic phase. 

Here we concentrate on the region X > 0, in which there are three phases: a 
large-D phase, a Haldane phase and an antiferromagnetic (AF) Ising phase. When 
the uniaxial anisotropy D is large enough, the ground state is dominated by zeros in 
the standard P-basis representation, because kl terms are suppressed; such states 
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belong to the large-D phase. When the anisotropic coupling X is large enough, the 
Hamiltonian resembles the onedimensional AF Ising Hamiltonian, and hence the 
ground state has a N6el order; such states belong to the AF king phase. Finally, 
in the Haldane phase, which includes the Heisenherg point ( D  = 0,X = l), the 
properties found for the VBS state are expected to appear. 

Den Nijs and Rommelse 141, Tisaki [SI, and Kennedy and Tisaki [8] argued that 
these phases are distinguished by the string order parameters or the hidden-symmetry 
breaking. For example, although the large-D phase and the Haldane phase cannot 
be classified by the correlations of local observables, they are specilied by the hidden 
2, x Z, symmetry. In the Haldane phase the symmetry is completely broken, while 
in the large-D phase it is not broken at all. 

In this section, we concentrate on the integer-S spin chains, and construct new 
anisotropic ws-type states, which we call intermediate-D VBS states. Then we 
evaluate the string order parameters in these states. 

We construct the intermediate-D ws states as follows. Let n and d be such 
integers that S = n + d.  At each site there are d pairs of up and down spin. The 
nearest-neighbour sites are connected by II valence bonds. There are 2( n + d )  spin-4 
variables at each site. We symmeaize these spin-; variables at each site to obtain the 
intermediate-D ws state with spin S. 

An example of the intermediate-D ws states is illustrated in figure 3. 

, , .. .. ._ . .. .._. __.. . . , 
--.--ti L 

, ,+ t ,  .:' ',., I t,.. ' '., + t,,: ',,, + t , , , '  
~ ~~ ~~ A T -  -7 ~~~ --.. , - ,  , *  

. . .~  ...... ...... .._.. 

Figure 3. Intermediate-D VBS state with n = 3 and d = 1 (S = 4). An up (down) 
arrow denotes an up (down) spin-; (cf figure I). 

Using the Schwinger boson representation, these states can be written as 
L-1 

(iDVBS(p, 9) )  = ( u ~ ) P ( b ~ ) " - P ( u t ) ~ t d ( b t ) n - q + d  ( a f b f ) d ( u j  bftl  - bfaf+l)"lO) 
j = 1  

(13) 
where p and q satisfy 0 < p, q < n, and represent the spin-:-like degree of freedom 
at both ends (cf equation (7)). These states are no longer invariant under arbitrary 
rotation but are invariant only for the rotation about the z axis by an arbitrary angle 
or the rotation ahout an axis perpendicular to the z axis by an angle r. 

We can also construct a Hamiltonian which has the intermediate-D VBS states (13) 
as the ground states as follows: 

H=CP(S, , i t l  > n + Z d ) + P ( ( S 3 >  n2). (14) 

Here P represents the projection operator defined by 

1 when (Sf)z > n2 
0 otherwise 

P((Sf)2 > 722) = 
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where S, is an arbitraly integer. 
We can prove that there are no otherground states of (14) than (13), following the 

method of Kennedy and co-workers [14]. Here we briefly describe the proof. First, 
the ground-state energy is greater than or equal to zero, because the Hamiltonian is 
the sum of the projection operators. Next, the existence of the intermediate-D VBS 
states (13) implies that the ground-state energy is exactly zero. As a consequence, 
the ground state must belong to the zero-eigenvalue of each projection operator. On 
the other hand, any state of a chain with spin S can be identified, in the Schwinger 
boson representation, with a polynomial of U ! ,  6,' which is of degree 2 s  for each 
at and bf. We can show that the polynomial which represents a zero eigenstate of 
P(Si , i t l  > n + 2d)  must contain a factor (a!bl+, - b!a! i t 1  )n, and the polynomial 
which represents a zero eigenstate of P((S;)* > n2) must contain a factor (afbf )d .  
We can conclude, from the unique factorizability of polynomials, that the ground 
states of the Hamiltonian (14) must be the intemediateD VBS states (13). 

Now we move on to the evaluation of the string order parameters in these 
intermediate-D VBS states. The method described in the previous sections is also 
useful here. However, the decoupling property must be modified for these states due 
to the lack of the full rotational invariance (see the appendix for more details). Let 
us write the decoupling property in the following form: 

( ~ D V W P ' ,  q')liDVBs(P, q)) - C(L)~,,,,~,,,,S(P)S(Q) 

We determine the 'metric' g(p) by means of a self-consistency condition. Let L be 
so large that the two spin-$-like degrees of freedom decouple completely. Suppose 
we obtain g ( p )  in such case. We add one more site to the chain, and construct the 
state of the same type with L + 1 sites. The new metric g ( p )  can be determined 
from the previous metric g(p), and they must be equal up to a constant factor. 
From this self-consistency condition we find that g(q) must be an eigenvector of the 
( n  + 1) x (n  + 1) matrix: 

L -+ W. 

(n+ d + q -  r ) ! ( n +  d +  r - q ) !  
Mq>r = [ r! (n  - .)!I2 

By definition, g(q) must be positive, and the matrix A4q,r has a unique positive 
eigenvector according to the Perron-Frobenius theorem. We can therefore determine 
g( q )  uniquely from the consistency condition. 

Once we get g(q), we can calculate the string order parameters Ofd,, and OF&. 
After some calculation, we get 

x ( n +  d +  I C -  l ) ! (n  + d +  1 - k)!(IC- 1 ) W k  

f 16) 
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and 

We immediately see that Oz. vanishes if n is even but does not vanish if n is 
odd. Furthermore, we see th?b;~nc vanishes if n is even, because of the symmetry 
g(n - q )  = g ( q )  which is implied by the invariance under rotation about the 3: axis 
by an angle ?r. Although we have no rigorous argument, Of.,$ is expected to be 
non-vanishing for an odd n in general; numerical calculations for some values of n 
and d support this conjecture. 

Therefore we have shown that the hidden Z, x Z, symmetry is completely broken 
in the intermediate-D VBs states when the number of valence bond n is odd, but 
remains unbroken when n is even. The fact that the hidden Z, x Z, symmetry 
breaking depends on the parity of the number of the valence bond, has been found 
in the intermediate-D VBS states, as well as in partially dimerized VBS states. We can 
understand this by the argument given in the end of section 3. 

The above result suggests the following picture for the ground-state phase diagram 
of the Hamiltonian (5) with an integer S > 1. When we move to the D + CO h i t  
from the Heisenberg point (D = 0,  X = I), several phases which are represented by 
the intermediate-D VBs states appear. Phase transitions between these phases are 
accompanied by a change in the hidden symmetry. A part of the expected phase 
diagram in the Hamiltonian (5) is shown in figure 4. 

Figun A. Conjecmred phase diagram of thc Hamiltonian (5) for S = 3. Only the 
regions with s p i f i e d  hidden symmetry is considered here. 

Our conjecture implies a different phase diagram from that in the bosonization 
approach [15]. 

We remark that, as we noted in the previous section, the discrepancy of the 
VBS-type Hamiltonians from the standard Hamiltonian (5) makes our arguments 
weak. However, the successive phase transitions are likely to exist, at least when we 
modify the form of the uniaxial anisotropy. Here we present an S = 2 model which 
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Figure 5. Antiferromagnetic Ising-vE stale. The Egure show the ground state of the 
S = 3 Hamiltonian (19) An up (down) a m  denoteS an up (down) spin 1 (cf figure 1). 

probably undergoes two successive phase transitions when we change the strength of 
the uniaxial anisotropy. 

We consider the S = 2 model with Hamiltonian 
H = C S i .  Si+, t D’($Sf)’”. (18) 

J 

For n = 1, this reduces to the standard Hamiltonian (5) with X = 0, D = 4D‘/9. 
When n is sufficiently large, the uniaxial anisotropy term D’(aSf)zn suppresses 

the f 2  terms in the Sz basis, but does not affect the f 1  terms. We can then identify 
the ground state of the chain with the ground state of some S = 1 spin chains, by 
identifying 0, f l  for S = 2 with 0, fl for S = 1 in the Sz-basis representation. 

In this identification, the spin operators for S = 2 are replaced by S = 1 spin 
operators as follows: 

S’ -* S’ S’” --3 Jss**v. 
Hence the S = 2 Hamiltonian (18) is equivalent to the S = 1 Hamiltonian (5) 

with X = $, D = 0, whose ground state is expected to be in the S = 1 Haldane 
phase. Therefore the den Nijs-Rommelse string order parameter O&, does not 
vanish and the hidden 2, x Z, symmetry is broken at this point. 

On the other hand, when we move to the D‘ + 03 region for any finite n, the 
site spin states f l  and f2 are inaccessible, and we have the large-D phase which 
does not break the hidden Z, x 2, symmetry at all. 

We conclude that, for sufficiently large n, as D‘ increases from 0, there must be 
two phase transitions separating different characters for the hidden Z, x Z, symmehy. 
(Here we adopt the plausibility argument that the hidden 2, x Z, symmetry is not 
broken in the S = 2 Heisenberg point (D‘ = O).) 

It is also possible to construct similar models for higher S, and discuss the phase 
diagram of spin-S chains referring to the phase diagram of the spin 1,2,. ... S - 1 
chains. However we do not investigate them here, because the phase diagram of the 
S 3 2 chains are not yet established. 

6. ws-type states with long-range order 

In this section, we construct new vss-type states with a long-range order and evaluate 
the string order parameters in these states. 

First, we wnstruct antiferromagnetic (AF) Ising-ms states, which have a long 
range N6el order as well as the VBS structure, by symmetrizing the valence bonds and 
Nkel ordered spin-; terms. Figure 5 shows an example, which is the ground state of 
the Hamiltonian 

H = ~ P ( S j , j t l  = 6 )  t P((Sjl t Sjltl)’ > 1) t P((Sjl)’ = 0) (19) 
J 

for S = 3. 
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The generalization of this model is not straightfonvard. We have not yet obtained 
the Hamiltonian that gives rise to an arbitrary Ising-ws state as the unique ground 
state. 

There are [S+ i] (here [I] denotes the maximum integer which does not exceed 
I) types of AF king-ws states, including the completely Nee1 ordered state. We 
expect that these states would represent certain aspects of the ground state of the 
more realistic Hamiltonian (5). When we increase the value of X in (5) from the 
Heisenberg point (D = 0, X = I), phases represented by these AF Ising-ws states 
might appear through successive phase transitions. 

However, even for an integer S, our hidden symmetry arguments cannot describe 
such successive phase transitions. Of course, when we move from the Haldane 
phase (which might be represented hy the standard VBS state) to the phase which 
is represented by the first AF king-VBS state, there is a change in the explicit Z, 
symmetry and we thus expect a phase transition. On the other hand, .4f king-VBS 
states with different numbers of the valence bonds have no difference either in the 
apparent Z, symmetry or in the hidden Z, x Z, symmetry breaking; in any AF Ising- 
VBS state, the string order parameter O& does not vanish in general because of 
the NBel order, and O.”v;ns vanishes because the Ising-ws state is not invariant under 
the rotation about I axis by an angle T .  Thus in any AF king-VBs phase, the hidden 
Z, x Z, symmetry is partially broken. 

In addition, we can also construct ferromagnetic (F) Ising-VBS states, which have 
ferromagnetic long-range order as well as the VBS structure, by symmetrizing valence 
bonds and ordered spin-f terms. An example of such states is shown in figure 6. 

........ . . . .  ...... . . . . . . . . . . . . . . . . .  ...... ...... 
+-- . ,  -- 

.. t t , . . :  ..... t t .  ..i : , . . , t t . , .  ‘ . , t t , , ’  

. ,  

.......... ......... ......... ....... 
Figure 6. Fenomagnelic Iring-veS slale. 

These states may represent the ground states which appear in a magnetization 
process of a quantum antiferromagnet For example, let us suppose that we increase 
the strength of the magnetic field B from 0 in the Hamiltonian 

An intuitive VBS picture suggests that the successive phase transitions take place in 
the magnetization process of S > 1 quantum antiferromagnets. However, even for 
an integer S, the F Ising-VBs states with a different number of valence bonds have 
common properties concerning the hidden Z, x Z2 symmetry; the hidden Z, x Z, 
symmetry argument cannot account for such successive phase transitions, as in the 
case of AF Ising-ws states. (For the present studies on the magnetization process of 
S = 1 quantum antiferromagnets, see [16]. Meek [17] studied the problem using 
large-S field-theoly mapping. Successive phase transitions are not predicted there.) 

It is remarked here that the F Ising-VBs states have not only a long- 
range ferromagnetic order but also valence bonds which favour short-range 
antiferromagnetic order. Applying the method described in the previous sections, 
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we can calculate the nearest-neighbour and long-range correlations in these states 
and verify the above observation. For example, we consider an F king VBS state with 
a valence bond between the neighbouring sites, and an up spin-i at each site. In this 
state, we find 

(S$S&,) = -0.15192. 

which implies the spin correlation is antiferromagnetic for every link. 
Eially, we mention another candidate for ws-type states. In S = 1 spin chains, 

there are X Y  phases which are similar to the low-temperature phase of the two- 
dimensional classical X Y  model (see figure 2). We might expect that, when S > 1, 
there are states in which X Y  structure and the VBS structure coexist. However, we 
have not yet succeeded in constructing such states. 

7. Extended string order parameters 

We have investigated the integer3 spin chains on the basis of the hidden Z, x Z, 
symmetry. However, our hidden Z, x Z, symmetry does not completely specify all 
possible states, and cannot be applied to half-integer S. 

'lb search for a more general specification, we here investigate an extension of 
the den Nijs-Rommelse string order parameter. We define extended string order 
parameters, which are characterized by an angle parameter 0 and reduce to the 
den Nijs-Rommeke ones at 0 = T, as follows: 

where 01 = E, y, z. We evaluate the extended string order parameter in several 
ws-type states for integer S and half-integer S. 

We begin with the (n, m)-ws states (10). As we did in section 4, we only consider 
the extended order parameter 

in these states with a bond alternation. Replacing the twist angle ?r with 0, we can 
apply the method which we used to evaluate the den Nijs-Rommelse string order 
parameter in section 4. The result is 

where fn,,(w) is given in (11). We see that, since f , , , (w)  is an nth-order 
polynomial of w, Op&( 0) does not vanish except (at most) at n points. We can prove 
a stronger statement that O;hn,,, has exactly n distinct zero points in 0 < 0 < 2 x  [18]. 
According to (ll), we have to prove that the nth order polynomial C;=u(2k- n)zk  
has n simple zero points on the unit circle IzI = 1. 

First we define the polynomials 
n 

P ( z )  = E2 
k=O 

Q(z)  = x ( 2 k  - n)z'.  
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A little calculation shows 

It is well known that P(z) has n simple zero points on the unit circle Iz( = 1, 
namely IP(ei"v)12 = 0 (0 < al < a2 < ... < a, < 27~). (lb be concrete, 
a, = [ v / ( n  + 1)]27~.) According to the mean value theorem, there are p, satisfying 
ay < p, < ay+] (we define a,+, = al + 27~) and 

From equation (21) and F'(ei@p) # 0 we can see Q(e'fl-) = 0, which completes the 
proof. 

We note that one of the zero points is always 0 = 0 because fn,m(l) = 0, 
and when n is odd another one is 0 = T ,  which corresponds to the den Nijs- 
Rommelse string order parameter. We expect that the number of the zero points is 
an invariant characteristic of the phase which is represented by one of the (n, m)-ms 
state. That is, all the phases appearing in the successive dimerization transitions arc 
characterized by the number of zero points of Op,,. However, we have not found 
any hidden symmetry which corresponds to the extended order parametcrs. 

Next, we move on to the intermediate-D WS state with n valence bonds 
and d pairs of up and down spin-+ terms symmetrized. In this state, we have 
0&(0)  = 0&(0) .  First we consider O;,ng(0). We see that 0&(6') vanishes 
except at 0 = T,  because the states are not invariant under rotation about the I 
axis by 6' # 0,n. When 0 = T,  we recover the den Nijs-Rommelse one, which 
we have already obtained in (17). We turn to the evaluation of 0&&0). We 
find O;,. (0) = If,!$)(eio)12, where fz) is given in (16). Let us see whether this 
string oraer parameter has a characterhic behaviour. For example, a numerical 
calculation of O&,, (0) shows that O;,ng(0) has only the trivial zero point 0 = 0 
in the n = 3,d = 4 intermediate-D VBS state. Thus the number of zero points of 
O& does not distinguish different intermediate-D W s  states in general, and our 
extension is not useful in distinguishing these states. Evaluation of the extended order 
parameter in the Ising-ws states leads to a similar conclusion. 

We note that the formulae for the string order parameters in (15) and (17) are 
valid even for half-integer S. Hence the den Nijs-Rommelse string order parameter 
(0 = T )  distinguishes the intermediate-D VBS states with odd n from those with even 
n for a half-integer S, as well as for an integer S. 

Hatsugai [19] made a numerical study on the extended order parameters for 
s = 1,2. 

8. Conclusion 

We found a compact operator representation for the Kennedy-Waki unitary 
transformation, and extended it to spin chains with arbitrary integer spin. Under 
this transformation, a wide class of Heisenberg-lie Hamiltonians of spin chains with 
an integer spin were found to transform into Hamiltonians of local interactions with 
a Z, x Z, symmetry. 
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It was also shown that the den Nijs-Rommelse string order parameter in the 
original system is equivalent to the ferromagnetic order parameter in the transformed 
system. Thus the non-vanishing string order parameter indicates the hidden Z, x Z, 
symmetry breaking. We found also a method to evaluate the string order parameter 
in the ws-type states. 

In the partially dimerized ws states, our analysis showed that the hidden Z, x 2, 
symmetry is broken if the number of the valence bonds between the neighbouring 
sites is odd, and is unbroken otherwise. This result suggests that the 2, x Z, symmetry 
broken and unbroken phases appear alternatingly when the dimerization proceeds. 

We constructed a new type of anisotropic ws-type states termed the intermediate- 
D ws states. We found that, in these states, the hidden Z, x 2, symmetry is broken 
if the number of the valence bonds between the neighbouring sites is odd, and 
is unbroken othenvise. Hence we were led to the conjecture that the Heisenberg 
antiferromagnetic chain undergoes successive phase transitions when we change the 
strength of the uniaxial anisotropy. 

Other new vss-type states with long-range order were constructed. ws-type 
states with ferromagnetic long-range order may represent phases which appear in 
the magnetization process of an antiferromagnetic chain. WS-type states with 
antiferromagnetic long-range order may represent phases of the Heisenberg XX Z 
chain. However, we could not distinguish these states with a different number of 
valence bonds with respect to the hidden Z, x 2, symmetry. 

We defined an extended string order parameter characterized by an angle 
parameter 8. In the partially dimerized ws states with n valence bonds between 
a neighbouring site, this order parameter was found to have n simple zero points in 

We therefore conclude that the notion of the hidden 2, x Z, symmetry breaking 
is useful in discussing the phase structure of the quantum spin chains with an integer 
spin. Our analysis suggests rich phase structures for S > 1 chains previously 
undetected by other approaches. It should be noted, however, that for the states 
which are not of the ws-type, our analysis cannot determine whether they break the 
hidden 2, x Z, symmetry. 

On the other hand, we could not distinguish several ws-type states completely in 
terms of the hidden Z, x Z, symmey breaking. Hence there may be more unknown 
hidden structures in S > 1 chains. Our extension of the string order parameter is a 
candidzte to detect such structures (see also 1191). Moreover, the large ground-state 
degeneracy of the vss models with S > 1 suggests that there are higher hidden 
symmetries other than our Z, x 2, symmetry. Investigation of such symmetries is an 
open problem to the future. 

0 ~ e < 2 ~ .  
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Appendix. Proof of the decoupling property 

Here we outline a proof of the decoupling property (8) for the VBS states. Using the 
Weyl representation 1111, we have 

sin Od@d+ 
dS2 = 

47r . 
As is emphasized in Ill], this integral can be interpreted as a formula for a correlation 
in a one-dimensional classical statistical system. Hence the decoupling properly is very 
natural from the physical point of view. In fact, we can prove it. 

Let us consider the eigenfunction of the transfer integral 

$;(a=) = pi dRyIc(%,ny)+i(fiy).  I 
The integral kernel I<(fiC,fiy) = (1 - 0, is symmetric and positive except 
for the region with measure zero. 

The mathematical properties of symmetric kernels defined on a finite space are 
well established [20]. Their eigenvalues are all real, and they have an orthogonal 
complete set of eigenfunctions. Furthermore, the  eigenvalues pi must satisfy 
C i ( p $  < 00. In  particular, the eigenvalues never have non-zero values as their 
accumulation point. 

We will call an eigenfunction which belongs to the maximum eigenvalue a 
maximum eigenfunction We shall show that the maximum eigenfunction is positive 
and not degenerate, if the kernel is positive. Assume we have an eigenfunction $(a) 
which changes the sign. The maximum eigenfunction makes the functional 

J[$l = Jdn,da,rr(n,,n,)$(n,)~(ny) 

maximum under the constraint JdS21$(f2)lZ = 1. However, we can easily see that 
4741 < J[1$1] since h' is positive, and therefore +(a) cannot be a maximum 
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eigenfunction. Thus we see that the maximum eigenfunction must be non-negative. 
Then the eigenequation implies that it must be positive. Furthermore, the non- 
degeneracy follows from the fact that we can choose the orthogonal complete set of 
eigenfunctions and that two positive functions are never orthogonal with each other. 

Hence our kernel K has the unique maximum eigenfunction lLl(n). Moreover, 
there is finite difference 6p between the maximum eigenvalue and the second one, 
because there is no non-zero accumulation point of eigenvalues. 

( V B S ( p , q ) I v B s ( v ,  s)) = constant X /dnp~,,,(n~)h(nd 

Thus we get 

x Jdn,zu,,,(n,)~,(n,)(lL,)L(l+ o ( ( S P ) - L ) ) .  

This is the decouplmg property of the VBS states. For the standard VBS states, 
the maximum eigenfunction is a constant function of n because of the rotational 
invariance. Hence the boundary degrees of freedom become normal spin-f objects, 
namely 

( v B s ( ~ , ~ ) I V B S ( T , ~ ) )  -constant x S,, ,S, , ,p!(S-p)!q!(S- q ) ! .  

We can apply similar arguments to the (n, n) -VBS states, the intermediate-D VBS 
states and the Ising-ws states; all these states have the decoupling property. However, 
for intermediateD or king-vss states, the integral kernel no longer has rotational 
invariance. Hence the maximum eigenfunction is not the constant function, and the 
boundary degrees of freedom become different from the normal spin-: objects with 
rotational invariance. (Here n represents the number of the valence bonds.) We 
describe a method to determine the nature of the boundary degrees of freedom in 
section 5. 
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